Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks
نویسندگان
چکیده
منابع مشابه
Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks
Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand...
متن کاملEEG datasets for motor imagery brain–computer interface
Background Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subj...
متن کاملA hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
BACKGROUND For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. NEW METHOD In this pa...
متن کاملEnhanced performance by a hybrid NIRS–EEG brain computer interface
Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Mot...
متن کاملCortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG
The present study aims to gain insights into the effects of training with a motor imagery (MI)-based brain-computer interface (BCI) on activation patterns of the sensorimotor cortex. We used functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to investigate long-term training effects across 10 sessions using a 2-class (right hand and feet) MI-based BCI in fifteen subj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0146610